Structural Chemistry of the Neptunium–Germanium Binary System

P. Boulet,¹ D. Bouëxière, J. Rebizant, and F. Wastin

European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany

Received June 26, 2000; in revised form September 20, 2000; accepted October 6, 2000; published online December 21, 2000

The structural chemistry of the complete binary neptunium-germanide system has been investigated by means of X-ray diffraction. In addition to the well-known NpGe₃ (AuCu₃ type), at least five new binary phases have been found. The crystal structure of NpGe_{2-x} (defect ThSi₂ type), NpGe_{2-x} (defect AlB₂ type), NpGe (USi type), Np5Ge4 (Ti5Ga4 type), and Np5Ge3 (W₅Si₃ type) have been refined from single-crystal and powder X-ray diffraction data. X-ray powder analyses by Rietveld-type profile refinement revealed a small homogeneity range of the three first phases, as usually observed with the rare-earth or uranium isotypic compounds, whereas Np5Ge4 and Np5Ge3 seem to be line compounds as the unit cell parameters were independent of the starting composition. The formation and the homogeneity range of these new phases are discussed, and the structural evolution is compared with the analogous uranium binary system. © 2001 Academic Press

Key Words: crystal structure; neptunium; intermetallic compounds.

INTRODUCTION

Intermetallic compounds R-T-X, where R is either a rare-earth or an actinide, T is a transition metal, and X is a metalloid element, have been intensively studied during the past 20 years. Many new compounds with different compositions and crystallizing with distinct structure types have been discovered. Particular interest has been devoted to special ternary families of compositions such as 1-2-2(1), 2-2-1(2,3), or 2-3-4(4-5). As a result of the intensive experimental and theoretical investigations, it was established that their electronic properties are mainly governed by the strength of the *f*-(*spd*) hybridization, i.e., the interaction of the *f* electrons with the conduction electrons. However, many conflicting results were reported on the same compounds due to the fact that these physical properties are very sensitive to elements of the "history" of the sample like heat treatment, homogeneity, or impurities. To know the intrinsic physical properties of these compounds, the first

¹ To whom correspondence should be addressed. Fax: 00(49) 07247 951 593. E-mail: Boulet@itu.fzk.de.

step is to determine the relation of equilibrium with the neighboring phases and to evaluate their homogeneity range. As a contribution to this subject the correct determination of the binary phase diagram itself is a prerequisite, and recently, binary uranium phase diagrams, like those of U–Si (6), U–Ge(7–10), and U–Sn(11), were reported, showing interesting properties ranging from paramagnetism to long-range magnetic order and/or superconductivity. Taking into account these new results, a literature search shows that the corresponding binary phase diagram with actinide elements like neptunium and plutonium were not well characterized. Therefore, within our program on strongly correlated 5f electron systems, the complete Np–Ge binary system has been investigated and we present the results of our X-ray analysis.

EXPERIMENTAL

Polycrystalline ingots were obtained by arc melting stoichiometric amounts of the constituent elements under an atmosphere of high-purity argon on a water-cooled copper hearth, using a Zr alloy as an oxygen getter. The materials were used in the form of ingots as supplied by Merck AG (germanium 4 N pure) and by LANL (neptunium 3 N pure). In order to ensure homogeneity, the arc-melted buttons were turned over and remelted three times, with weight losses lower than 0.5%. The samples were checked by X-ray powder diffraction data (Cu $K\alpha_{1,2}$ radiation) collected on a Bragg-Brentano Siemens D500/501 diffractometer using a 2θ step size of 0.02° . The diffraction patterns were analyzed by a Rietveld-type profile refinement method using the Fullprof program (12). The single-crystal X-ray diffraction data were collected on a Enraf-Nonius CAD-4 four-circle diffractometer using a monochromated Mo $K\alpha$ wavelength. The data processing was carried out using the Molen package (13).

X-RAY STRUCTURAL CHARACTERIZATION

NpGe₃

The binary richest in germanium, NpGe₃, is the only phase that has already been reported in this system (14). It

crystallizes with the cubic AuCu₃ type, and the lattice parameter obtained by full-profile refinement on D500 powder data (a = 4.2114(9) Å) is in good agreement with the values usually reported in the literature (a = 4.213). Magnetic investigations (15) of this phase show that it does not order magnetically down to 1.7 K. Particular interest has been devoted to this family of compounds since it belongs to the series AnX_3 with An = actinide and X = Al, Ga, In, Pb, Si, Ge, and Sn. All of these compounds have An-An interatomic distances larger than the Hill limit and exhibit different magnetic properties, going from independent paramagnetism to ferro/antiferromagnetic, emphazing the dominant role of the 5*f-spd* (ligands) hybridization in the localization/delocalization process.

$NpGe_{2-x}$

The defect disilicide or digermanide compounds with rare earth or actinide elements are known to crystallize in two types of structures, a tetragonal ThSi₂ type and a hexagonal AlB₂ type. As usually observed in these systems, both structural modifications were encountered in the Np-Ge binary system.

The X-ray powder analyses of the as-cast sample with nominal composition Np₃Ge₅, i.e., NpGe_{2-x}, x = 0.34, was indexed with a body-centered tetragonal unit cell with a = 4.0867(2)Å and c = 13.921(1)Å, revealing a singlephase product for this composition. Single crystals suitable for crystal structure determination were easily extracted from this sample, showing in particular that this phase crystallizes either congruently or by a peritectic transformation. The single-crystal X-ray diffraction data were collected on an Enraf-Nonius CAD-4 four-circle diffractometer with the experimental conditions listed in Table 1. The X-ray diffraction intensities were corrected for Lorentz and polarization effects, and an absorption correction was applied using the psi-scan method. The structure was successfully refined in the centrosymmetric space group $I4_1/amd$ with the reliability factors R = 0.062, Rw = 0.086. NpGe_{2-x} crystallizes with the ThSi₂ structure type with, as expected, a deficient occupancy factor for the germanium crystallographic site, leading to the composition $NpGe_{1.72(4)}$ for the

 TABLE 1

 X-Ray Crystallographic Data for NpGe,__, (ThSi, Type), Atomic Parameters, and Interatomic Distances

-													
Method					single-crystal refinement								
Space group					$I4_1/amd$,	no. 141, origin at	-1						
Linear absorp	tion coefficien	$t (cm^{-1})$			793.0	0	0	0 -					
Lattice param	eters (from CA	AD4)(Å)			a = 4.080 M = 32	M(1) Å, $c = 13.909(3)54.6 g$	$(A) \dot{A}, V = 231.6(2)$	$Å^3, d_{calc} = 10.99$	$gcm^{-3}, Z = 4,$				
Scan range				$2 < \theta < 30$									
~8-					-5 < h	< 5 5 < k < 5.	-19 < l < 19						
Total observe	d reflections			1510									
Total observe	d reflections af	fter average			257								
Independent r	eflections with	$I > 3\sigma$			93								
Secondary ext	inction coeffic	ient		$q = 1.038 \times 10^{-6}$ corr $= 1/(1 + qIc)$									
Number of va	riables				9	,,							
Reliability fac	tors:				0.062								
$R = \sum [F_{o}]$ $R_{o} = \sum [\sum (P_{o})]$	$\frac{- F_{\rm c}]/\sum F_{\rm o} }{ F_{\rm c} - F_{\rm c} }^2/\Sigma$	$ F_{2} ^{2}$		0.086									
Goodness of f	fit, GOF	0 0 1			3.16								
				Ato	m parameters								
Atom	Site	x	У	Z	B(1,1)	B(2,2)	<i>B</i> (3,3)	B in Å ²	$ au_{ m occ}$				
Np	4a	0	$\frac{3}{4}$	1/8	0.56(6)	B(1, 1)	0.63(8)	0.61(3)	1				
Ge	8e	0	$\frac{1}{4}$	0.2927(8)	5.0(7)	0.5(3)	4.4(4)	3.3(2)	1.72(4)				
				Interatomic distances (in Å)									
	Central a	atom: Np		Central atom: Ge									
Ligand atom			Dis	Distance		Ligand atom		Distance					
4Ge			3.0	99(9)	1Ge 2.29(2)								
8Ge			3.10	04(4)		2Ge 2.361(8)							
4Np			4.0	31(0)		2Np	3.099(9))					
4Np			4.03	80(0)		4Np 3.104(4)							

Note. The form of the anisotropic displacement parameter is exp $\left[-\frac{1}{4} (h^2 a^{*2} B(1, 1) + k^2 b^{*2} B(2, 2) + l^2 c^{*2} B(3, 3) + 2hka^* b^* B(1, 2) + 2hla^* c^* B(1, 3) + 2klb^* c^* B(2, 3)\right]$, where a^* , b^* , and c^* are reciprocal lattice constants.

FIG. 1. View of NpGe_{2-x} (ThSi₂ type) crystal structures; the distorted AlB₂ blocks are shown.

crystal studied. The positional and thermal parameters and the main interatomic distances are listed in Table 1. A view of the structure is illustrated in Fig. 1 with, as for the other structure figures, the neptunium atoms in black and the germanium atoms in light gray.

The X-ray powder patterns of samples with nominal composition Np₃Ge_{4.8} were indexed on the basis of a hexagonal unit cell with a = 3.9686(2) Å and c = 4.1705(3) Å. Single crystals suitable for crystal structure determination were easily obtained from the as-cast samples. As shown in Table 2, the structure was successfully refined in the space group P6/mmm (no. 191) with the reliability factors R = 0.085, Rw = 0.095. This phase crystallizes with the AlB_2 structure type with, as expected, a deficient occupancy factor for the germanium site, leading to the composition NpGe_{1.59(4)} for the crystal studied. The positional and thermal parameters and the main interatomic distances are listed in Table 2. A view of the crystal structure is illustrated in Fig. 2. Besides this, it has to be mentioned that as usually observed with the M_3T_5 binary compounds, where M is a rare earth or actinide elements and T is a metalloid element like Si or Ge, indication of a supercell structure has been evidenced from the X-ray powder as well as the singlecrystal data. It is worth mentioning here that the AlB_2 type is rarely encountered without these superstructure lines (10), which are due to the ordering of the germanium vacancies, but no real successful crystal structure determination had been reported yet for this type of structure. The ThSi₂ type

TABLE 2
X-Ray Crystallographic Data for NpGe _{2-x} (AlB ₂ Type),
Atomic Parameters, and Interatomic Distances

Metho	Method						ngle-crys	tal refin	ement				
Space g	group					<i>P6/mmm</i> , no. 191							
Linear	absorp	tion cc	efficien	t (cm	⁻¹)	80	4.9						
Lattice parameters (from CAD4)(Å)							a = 3.9686(2) Å, c = 4.1705(3) Å, $V = 56.958(5) \text{ Å}^3,$ $d_{\text{calc}} = 10.42 \text{ g cm}^{-3}, Z = 1,$ M = 357.5 g						
Scan ra	inge				2	$< \theta < 30$	0, -7 < 0	h, k, l < 7					
Total c	bserved	d reflec	tions			14	12						
Indepe	ndent r	eflectio	ns with	I > 3	σ	99)						
Secondary extinction coefficient							$g = 3.045 \times 10^{-6},$ corr. = 1/(1 + gIc)						
Numbe	er of va	riables				7							
Reliabi	lity fact	tors:				0.085							
$R = \sum [F_{o} - F_{c}] / \sum F_{o} $ $R_{o} = [\sum_{u} (F_{o} - F_{c})^{2} / \sum_{u} F_{o} ^{2}]^{1/2}$				1/2	0.095								
Goodn	ess of f	it, GO	F			2.59							
				Atom	para	met	ers						
Atom	Site	x	у	Ζ	B(1,	1)	<i>B</i> (3, 3)	B in Å ²	$ au_{ m occ}$				
Np	1a	0.0	0.0	0.0	0.87	(5)	0.33(5)	0.69(2)	1				
Ge	2d	1/3	2/3	1/2	5.8(4	4)	0.6(2)	4.0(2)	1.59(4)				
			Inter	atomi	c dist	and	ce (in Å)						
	Central	atom:	Np			Central atom: Ge							
Ligand	atom		Distar	nce		Ligand Atom Distance							
12Ge			3.098((1)			3Ge	e	2.291(1)				
6Np			3.968((1)			6Nj	2	3.098(1)				
						$\frac{(1)}{(1)} \frac{(1)}{(1)} (1$							

Note. The form of the anisotropic displacement parameter is $\exp[-\frac{1}{4}(h^2a^{*2}B(1, 1) + k^2b^{*2}B(2, 2) + l^2c^{*2}B(3, 3) + 2hka^{*}b^{*}B(1, 2) + 2hla^{*}c^{*}B(1, 3) + 2klb^{*}c^{*}B(2, 3)]]$, where a^{*} , b^{*} , and c^{*} are reciprocal lattice constants; B(1, 2) = B(2, 2) = B(1, 1), B(1, 3) = B(2, 3) = 0.0.

and AlB₂ type are quite correlated and could be derived one from the other. The ThSi₂ type is built up from distorted AlB₂ blocks which are alternatively translated by $\frac{1}{2}$ a and $\frac{1}{2}$ b along the c axis. As mentioned by Venturini *et al.* (16), the transformation of the tetragonal ThSi₂ type into the

FIG. 2. View of NpGe_{2-x} (AlB₂ type) crystal structure.

FIG. 3. View of the NpGe (USi type) crystal structure.

hexagonal AlB_2 type is not simple and goes through many different supercells, depending on the exact content on germanium vacancies.

Finally, it was found that this phase exhibits a slight homogeneity range. From the starting composition Np_3Ge_4 , a two-phase Rietveld refinement of the powder

FIG.4. X-ray powder diffraction pattern of Np₅Ge₄ (Ti₅Ga₄ type). The symbols represent the observed points; the solid lines represent the calculated profile and the difference between observed and calculated profiles. The ticks correspond to $2\theta_{hkl}$ Bragg positions.

Method Space gr	oup		single I4/m	single-crystal refinement $I4/mmm$ no 139 origin at -1						
Linear a	bsorption	n coefficient	- 1/111	,		-				
(cm^{-1}))		1052.2	2						
Lattice p	parameter	rs								
(from	CAD4)(Å	()	a = 1	0.9117(6)Å,	c = 25.35	8(1)Å,				
			<i>V</i> =	= 3019.3(4)	Å ³ ,					
	cm ^{−3} ,									
			Z =	= 68, M = 3	09.6 g					
Scan rar	nge		$2 < \theta$	< 30						
			- 16	< h < 16, -	-16 < k <	< 0, - 36				
			<	l < 0						
Total ob	served re	eflections	4672							
Total ob	served re	effections aft	er							
averag	ge	<i></i>	1309							
Independ	dent refle	ctions	002							
with I	$> 3\sigma$.:	803	803						
Seconda	ry extinc	tion		$\alpha = 2.5002 \times 10^{-8}$ corr $= 1/(1 + cI_2)$						
Number	of vorial		g = 2	$g = 2.5992 \times 10^{\circ}$, $cont. = 1/(1 + gic)$						
Paliabili	of variat	JIES	34	<i>J</i> T						
$R = \Sigma$	F = E	$F \mid 1/\Sigma \mid F \mid$	0.071	0.071						
$R = \sum_{k=1}^{n}$	$\sum (F) = 1$	$ F ^2 \langle \nabla F $	1 ²] ^{1/2}							
$\mathbf{r}_{\omega} = \mathbf{L}$			0.092							
Goodnes	ss of fit. (GOF	2.72							
	, -									
	~.	А	tom param	eters	82					
Atom	Site	x	У	Ζ	$B \ln A^2$	$\tau_{\rm occ}$				
Np(1)	4e	0.0	0.0	0.2528(2)	0.91(8)	1				
Np(2)	8f	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0.69(5)	1				
Np(3)	8j	0.2623(4)	$\frac{1}{2}$	0.0	0.56(5)	1				
Np(4)	16n	0.0	0.2579(3)	0.0617(1)	0.64(4)	1				
Np(5)	16n	0.0	0.3584(3)	0.1907(1)	0.98(4)	1				
Np(6)	16m	0.1832(2)	_	0.3840(1)	0.67(4)	1				
Ge(1)	2a	0.0	0.0	0.0	2.5(6)	1				
Ge(2)	4c	0.0	$\frac{1}{2}$	0.0	0.2(2)	1				
Ge(3)	4e	0.0	0.0	0.095(2)	0.3(6)	0.38(1)				
Ge(4)	4e	0.0	0.0	0.4309(6)	0.3(2)	1				
Ge(5)	8h	0.2368(7)	_	0.0	0.3(1)	1				

TABLE 3 X-Ray Crystallographic Data for NpGe (USi Type) and Atomic Parameters

diffraction data, showing the equilibrium between the AlB₂ type and the neighboring binary phase NpGe (see below), leads to the lattice parameters a = 3.9712(2) Å, c = 4.1702(2) Å and to an occupation factor of 1.48(1) Ge, i.e., approximately Np₂Ge₃.

0.3791(7)

0.2574(7) 0.2996(3)

0.3990(3)

0.1551(3)

0.4(1)

0.4(1)

0.6(1)

1

1

1

NpGe

Ge(6)

Ge(7)

Ge(8)

16n

16n

16m

0.0

0.0

0.1352(5)

Increasing the content of neptunium in our samples shows that the next binary phase in the Np–Ge binary system melts congruently since single crystals could be easily obtained from the as-cast samples. The single-crystal X-ray diffraction data were collected with the experimental conditions listed in Table 3. The tetragonal lattice constants, determined from least-squares analysis of the setting angles of 25 X-ray reflections have the values a = 10.889(3) Å and c = 25.327(8) Å. The X-ray diffraction intensities were corrected for Lorentz and polarization effects, and an absorption correction was applied using the psi-scan method. The inspection of the systematic extinctions revealed that *hkl*, h + k + l = 2n were not present. The structure was successfully refined in the body-centered space group *I4/mmm* with the reliability factors R = 0.088, Rw = 0.111 using the atomic position reported for USi (17). The correct formula obtained is thus Np₆₈Ge₇₀; however, as also observed for USi, large isotropic factors of some Ge sites, namely, Ge(1)

 TABLE 4

 X-Ray Crystallographic Data for Np5Ge4 (Ti5Ga4 Type), Atomic Parameters, and Interatomic Distances

Method			full j	full profile refinement of X-ray powder						
Space group	n		P_{6}/mcm no 193							
Lattice por	p	(Å)	a = 8.8004(0) Å $c = 5.0274(7) Å$							
Lattice para	ameters	(A)	u = V =	$a = 8.8004(9) \text{ A}, \qquad c = 5.92/4(7) \text{ A},$ $V = 397.56(7) ^{3} ^{3} ^{2} ^{-2} ^{M} = 1475.6 ^{3} ^{3}$						
Scan range			, 20 <	v = 397.30(7)A, $Z = 2$, $W = 1473.0$ g 20 < 2 θ < 140						
Number of	reflectio	ons used in								
refinemer	nt		313							
R _B			0.07	1						
$R_{\rm f}$			0.04	1						
R			0.10	8						
R_{wp}^{P}			0.13	8						
		Aton	n para	meters						
Atom	Site	x	y	Ζ	B in Å ²	$\tau_{\rm occ}$				
Np	4d	$\frac{1}{2}$	$\frac{2}{3}$	0	0.57(1)	1				
Np	6g	0.2761(1)	0.0	$\frac{1}{4}$	0.57(1)	1				
Ge	6g	0.6192(4)	0.0	4 1	0.78(2)	1				
Ge	2b	0.0	0.0	0.0	0.37(2)	1				
		Interators	in dist	anaaa (in Å)						
Cen	tral ator	n: Np(1)		Central atom: Np(2)						
Ligand atom Distance				Ligand ator	vistance					
2Nn(1)		2.963(0)		2Ge(2)	2	848(1)				
6Ge(1)		3.136(1)		2Ge(2)	2	966(2)				
6Nn(2)		3.536(1)		1Ge(1)	3	058(3)				
01(p(2)		5.550(1)		2Ge(1)	3	089(1)				
				4Nn(1)	3	536(1)				
				4Np(2)	3	.833(1)				
Cen	tral ator	n: Ge(1)		Central atom: Ge(2)						
Ligand ator	n	Distance		Ligand ator	n D	istance				
2Nm(2)		2.066(2)		(Nin(2))	2	040(1)				
$2 \ln p(2)$ $1 \operatorname{Np}(2)$		2.900(3)		$2 \operatorname{G}_2(2)$	2	.040(1)				
11NP(2)		3.030(2)		2 Ge(2)	2	.903(0)				
$2 \ln p(2)$ $4 \operatorname{Nin}(1)$		3.089(2)		0Ge(1)	3	.021(3)				
41Np(1)		3.130(1)								
2Ge(2)		3.621(3)								
2Ge(1)		3.682(2)								

FIG. 5. View of the Np₅Ge₄ (Ti₅Ga₄ type) crystal structure.

and Ge(3), were obtained. The refinement of the occupation factor of these Ge sites revealed a defect structure only on the Ge(3) site (i.e., the occupation factor drops from 0.125 to 0.048 as the isotropic factor goes from 7.78 to 0.33), leading to the residual values R = 0.084 and Rw = 0.109. Final refinement including anisotropic displacement parameters led to the conventional residuals factors R = 0.071 and Rw = 0.092. The positional and the thermal parameters are listed in Table 3. A view of the structure is illustrated in Fig. 3. As mentioned in Ref. (17), this structure is rather complex, due to the great number of different atomic sites. The main feature of this structure is that some Np-Np interatomic distances are just below the Hill limit where the 5*f* shells are expected to overlap.

Np_5Ge_4

Figure 4 shows the X-ray powder pattern obtained for the nominal composition Np₅Ge₄. Full profile refinement revealed an hexagonal type unit cell with a = 8.8004(9) Å and c = 5.9274(7)Å, c/a = 0.673. The structure was successfully refined in the centrosymmetric space group $P6_3/mcm$, to the residual values $R_{\rm B} = 0.071$ and $R_{\rm F} = 0.041$. Np₅Ge₄ crystallizes with the Ti₅Ga₄ structure type, as already reported for the homologue uranium binary compounds with Ge(9), Sb(18), and Sn(11). The positional and thermal parameters and the main interatomic distances are listed in Table 4. A view of the crystal structure is displayed in Fig. 5. This structure is characterized by two distinct Np sites. Each Np(1) atom is coordinated by six Ge(1) atoms at 3.13 Å and two other Np(1) atoms with a rather short distance of c/2 = 2.96 Å leading to straight -Np-Np- infinite chains along the c axis, whereas Np(2) is surrounded by seven Ge atoms with an average distance of 2.98 Å. Such short distances between Np(1) atoms are smaller than the Hill limit $(\sim 3.1 \text{ Å})$ and very close to that found in Np metal (2.60 Å in α – Np and 2.76 Å in β – Np).

Np_5Ge_3

In the U–Ge binary system, no other compound was observed with a higher content of U than in U_5Ge_4 (9). For the Np–Ge system as shown in Fig. 6, we found that Np metal (sg *Pnma*, a = 6.685(6)Å, b = 4.742(3)Å, and

FIG.6. X-ray powder diffraction pattern of Np₅Ge₃ (W₅Si₃ type). The symbols represent the observed points; the solid lines represent the calculated profile and the difference between observed and calculated profiles. The ticks correspond to $2\theta_{hkl}$ Bragg positions (top, Np₅Ge₃; bottom, Np metal).

Method			sull pro diffra	sull profile refinement of X-ray powder diffraction data						
Space gro	oup		I4/mcm	I4/mcm, no. 140 a = 11.434(1) Å, $c = 5.5197(7)$ Å, $V = 5216(1)$ Å						
Lattice pa	arameters	(Å)	a = 11.4							
a			/21.6(2)	/21.6(2) A ³ , Z = 4, M = 1403.02 g						
Scan rang	ge		$20 < 2\theta$	$20 < 2\theta < 140$						
Number of	of reflectio	ns used in								
refinem	ent		412							
Reliability	y factors:									
R _B			0.071							
$R_{\rm f}$			0.046	0.046						
R _n			0.153							
R_{wp}^{p}			0.183							
		Ato	om paramet	ers						
Atom	Site	x	y	Ζ	B in Å ²	$\tau_{\rm occ}$				
Np(1)	4b	0.0	$\frac{1}{2}$	$\frac{1}{4}$	0.2^{a}	1				
Np(2)	16k	0.0842(1)	0.2217(1)	0.0	0.2^{a}	1				
Ge(1)	4a	0.0	0.0	$\frac{1}{4}$	0.4^{a}	1				
Ge(2)	8h	0.1674(5)	$x + \frac{1}{2}$	0.0	0.4^{a}	1				
		Interator	mic distance	es (in Å)						

TABLE 5									
X-Ray Crystallographic Data for Np5Ge3 (W5Si3 Type), Atomic									
Parameters, and Interatomic Distances									

Central atom: Np(1)	Central atom: Np(2)

Ligand atom	distance	Ligand atom	Distance			
2Np(1)	2.759(1)	1Ge(2)	2.931(1)			
4Ge(2)	2.992(2)	2Ge(1)	3.018(3)			
8Np(2)	3.639(1)	1Ge(2)	3.157(2)			
		1Np(2)	3.171(1)			
		2Ge(2)	3.198(1)			
		2Np(2)	3.384(2)			
		2Np(2)	3.498(2)			
Central a	tom: Ge(1)	Central ato	Central atom: Ge(2)			
Ligand atom	Distance	Ligand atom	Distance			
2Ge(1)	2.759(1)	2Np(2)	2.931(1)			
8Np(2)	3.018(3)	2Np(1)	2.992(2)			
8Ge(2)	3.494(3)	2Np(2)	3.157(2)			
		4Np(2)	3.198(1)			
		2Ge(2)	3.917(2)			

^a Parameters not refined.

FIG. 7. View of the Np₅Ge₃ (W₅Si₃ type) crystal structure.

c = 4.920(4) Å) was not in equilibrium with Np₅Ge₄ but with an other phase of the composition, Np₅Ge₃. A look in the literature shows that Pu_5Si_3 (19), which crystallizes with the tetragonal W₅Si₃, is the only representative binary actinide already reported with this composition. Analyses of the X-ray powder pattern revealed that Np₅Ge₃ crystallizes with a body-centered tetragonal unit cell with a = 11.434(1) Å and c = 5.5197(7) Å. This phase was refined using the Rietveld method to the W₅Si₃ structure type, in the space group I4/mcm, to the reliability factors of $R_{\rm B} = 0.071$ and $R_{\rm f} = 0.046$. The positional and thermal parameters are listed in Table 5. A view of the structure is illustrated in Fig. 7. The W₅Si₃ type is also reported to exist in most of the rare earth silicide binary systems, but not with uranium. The striking feature of this structure is that, as observed for Np₅Ge₄, the Np(1) form metallic chains along the c axis, with interatomic distances equal to 2.76 Å, i.e., much smaller than those observed in Np5Ge4 and in the same order as in β -Np.

 TABLE 6

 Summary of the Crystal Structure of the Binary Silicides and Germanides with Uranium or Neptunium

Structure type/system	AuCu ₃	ZrGa ₂	ThSi _{2-x}	AlB _{2-x}	USi	ThIn	U ₅ Si ₄	Ti₅Ga₄	U ₃ Si ₂	W ₅ Si ₃	AuCu ₃ (anti)	Ref.
U-Si	\checkmark	×	\checkmark	\checkmark	\checkmark	×	\checkmark	×	\checkmark	×	\checkmark	[6,20]
Np-Si	\checkmark	?	\checkmark	\checkmark	?	?	?	?	\checkmark	?	?	[21]
U-Ge	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	×	\checkmark	×	×	×	[7-10]
Np-Ge	\checkmark	×	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark	×	this work

Note. (\times) Phase does not exist; (\checkmark) phase exists; (?) not investigated.

CONCLUSION

In this paper we have shown that at least six phases exist in the neptunium–germanium binary system, whereas only one was previously reported in the literature. For comparison, Table 6 gives a summary of the binary silicides and germanides with uranium and neptunium. From pure germanium to the composition NpGe, we observed the structural sequence of AuCu₃, ThSi₂, AlB₂, and USi types, showing more similarities to the U–Si binary system than to the U–Ge system. For the neptunium-rich part, we observed the Ti₅Ga₄ type, which is also observed in the U–Ge system but not in the U–Si system, and a new type of structure, namely, Np₅Ge₃ (W₅Si₃ type) not yet reported in Th or U binary systems. In any case, the study of the physical properties of the new phases isolated is of great interest, especially the influence of the metalloid on the magnetism of neptunium.

ACKNOWLEDGMENTS

The high-purity Np metal required for the fabrication of the compounds studied here was made available through a loan agreement between Lawrence Livermore National Laboratory and ITU, in the frame of a collaboration involving LLNL, Los Alamos National Laboratory, and the U.S. Department of Energy. P. Boulet acknowledges the European Commission for support given in the frame of the program "Training and Mobility of Researchers."

REFERENCES

- 1. A. Szytula, *in* "Handbook of Magnetic Materials" (K. H. J. Buschow, Ed.), Vol. 6, p. 85. Elsevier, Amsterdam, 1991.
- L. C. J. Pereira, F. Wastin, J. M. Winand, B. Kanellakopoulos, J. Rebizant, J. C. Spirlet, and M. Almeida, *J. Solid State Chem.* 134, 138 (1997).

- 3. F. Mirambet, P. Gravereau, B. Chevalier, L. Trut, and J. Etourneau, J. Alloys Compounds 191, L1 (1993).
- T. Le Bihan, H. Noël, K. Hiebl, and P. Rogl, J. Alloys Compounds 232, 142 (1996).
- F. Wastin, J. Rebizant, J. P. Sanchez, A. Blaise, J. Goffart, J. C. Spirlet, C. T. Walker, and J. Fuger, J. Alloys Compounds 210, 83 (1994).
- K. Remschnig, T. Le Bihan, H. Noël, and P. Rogl, J. Solid State Chem. 97, 391 (1992).
- P. Boulet, A. Daoudi, M. Potel, H. Noël, G. M. Gross, G. André, and F. Bourrée, J. Alloys Compounds 247, 104 (1997).
- P. Boulet, A. Daoudi, M. Potel, and H. Noël, J. Solid State Chem. 129, 113 (1997).
- P. Boulet, M. Potel, J. C. Levet, and H. Noël, J. Alloys Compounds 262/263, 229 (1997).
- P. Boulet, M. Potel, G. André, P. Rogl, and H. Noël, J. Alloys Compounds 283, 41 (1999).
- 11 P. Boulet and H. Noël, Solid State Commun. 107(3), 135 (1998).
- 12. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).
- C. K. Fair, "Molen Users Manual. An Interactive Intelligent System for Crystal Structure Analysis." Delft, The Netherlands, 1989.
- G. Kimmel, Dept. of Mater. Eng., Israel Inst. of Technology, Technion Haifa, Israel, ICDD Grant-in-Aid, 1993.
- J. Gal, Z. Hadari, E. R. Bauminger, I. Nowik, and S. Ofer, *Solid State Commun.* 13, 647 (1973).
- G. Venturini, I. Ijjaali, and B. Malaman, J. Alloys Compounds 285, 194 (1999).
- 17. T. Le Bihan, H. Noël, and P. Rogl, J. Alloys Compounds 240, 128 (1996).
- J. A. Paixao, J. Rebizant, A. Blaise, A. Delapalme, J. P. Sanchez, G. H. Lander, H. Nakotte, P. Burlet, and M. Bonnet, *Physica B* 203, 137 (1994).
- D. T. Cromer, A. C. Larson, and R. B. Roof, *Acta Crystallogr.* 17, 947 (1964).
- H. Noël, V. Queneau, J. P. Durand, and P. Colomb, *in* "Abstracts of Int. Conf. on Strongly Correlated Electron Systems-SCES98, 15–18 July, Paris, 1998," p. 92.
- P. Villars and L. D. Calvert, "Pearson's Handbook of Crystallographic Data for Intermetallic Phases." ASM, Materials Park, OH, 1991.